Find Tuition/Enrichment Centres

AskQ logo

STUCK ON HOMEWORK?

ASK FOR HELP FROM OUR KIASUPARENTS.COM COMMUNITY!

Question

Answer

(a)  Using Pythagoras theorem, height of cone = sqrt [(25)2 – (5)2 ] = sqrt(600)

Volume of cone =  (1/3)πr2h

Volume of conical candle = (1/3)π (5) sqrt(600) = 641.27 cm (to 2 dec. places)

(b) 300 mins —> 641.27
In 30 mins, melted volume of candle = (641.27/300) x 30 = 64.127
Melted volume of candle / Original Candle  = 64.127/641.27 = 0.1 or  (1/10)
 
(c)  Ratio of volumes of similar cones = (a/b) 3   where a and b are either both radius or both height of similar cones.
Ratio of  surface areas of similar cones = (a/b) 2   where a and b are either both radius or both height of similar cones.
  So,  SA of shaded region of figure 2 =  [cube-root (1/10)]2 x SA of original conical candle
                                                                   = (1/10)2/3  x  π  x (5)2
                                                                    =  16.92 cm2
 
(d)  From (c),  π( r1)2 = (1/10)2/3  x  π  x (5)
                         ( r1)2 =  (1/10)2/3  x  (5)
We know that for similar cones, the volume ratio is:
 (1/3)π( r1)2h1  /   (1/3)π( r2)2h2 = 1/10
 
So,  h1 = [ (1/10) x  ( r2)2h2 ] / ( r1)2  
                   =   [ (1/10) x (5)2 sqrt(600) ]  /  (1/10)2/3  x  (5)2
                   =   11. 3695
 
Hence height of cylinder = height of remaining conical candle =  sqrt(600) – 11.3695
                                                                                                                  = 13.13   (to 2 decimal places)
 
(e)   Volume of remaining conical candle = 641.27-64.127 = 577.143
        Volume of cylinder =  πr2h = π x (5)2 x (13.13)
         Hence Volume of empty space in fig 3 = Vol of cylinder – Vol of remaining conical candle
                                                                               = π x (5)2 x (13.13)  –  577.143
                                                                               =  454.08 cm2 (to 2 decimal places)
 
1 Reply 1 Like ✔Accepted Answer

OMG.  This is beyond me.

1 Reply 0 Likes

Chief, this is the type of tedious question that you spoke about.   Doing math is like running a marathon, need to build stamina for such types of questions.   The non-tedious types with typically less than 5 lines of solution need to use much more brain cells which you prefer but they are usually very difficult for most people.

 

0 Replies 1 Like
Find Tuition/Enrichment Centres